#llm + #ai

Public notes from activescott tagged with both #llm and #ai

Sunday, January 4, 2026

I'm not joking and this isn't funny. We have been trying to build distributed agent orchestrators at Google since last year. There are various options, not everyone is aligned... I gave Claude Code a description of the problem, it generated what we built last year in an hour.

Thursday, December 18, 2025

Wednesday, November 26, 2025

LLM agents are vulnerable to prompt injection attacks when handling untrusted data. In this paper we propose CaMeL, a robust defense that creates a protective system layer around the LLM, securing it even when underlying models are susceptible to attacks. To operate, CaMeL explicitly extracts the control and data flows from the (trusted) query; therefore, the untrusted data retrieved by the LLM can never impact the program flow. To further improve security, CaMeL uses a notion of a capability to prevent the exfiltration of private data over unauthorized data flows by enforcing security policies when tools are called.

Visit a Reddit post with Comet and ask it to summarize the thread, and malicious instructions in a post there can trick Comet into accessing web pages in another tab to extract the user's email address, then perform all sorts of actions like triggering an account recovery flow and grabbing the resulting code from a logged in Gmail session.

Monday, November 10, 2025

Be patient. Not afraid.

For layoffs in the tech sector, a likely culprit is the financial stress that companies are experiencing because of their huge spending on AI infrastructure. Companies that are spending a lot with no significant increases in revenue can try to sustain profitability by cutting costs. Amazon increased its total CapEx from $54 billion in 2023 to $84 billion in 2024, and an estimated $118 billion in 2025. Meta is securing a $27 billion credit line to fund its data centers. Oracle plans to borrow $25 billion annually over the next few years to fulfill its AI contracts. 

“We’re running out of simple ways to secure more funding, so cost-cutting will follow,” Pratik Ratadiya, head of product at AI startup Narravance, wrote on X. “I maintain that companies have overspent on LLMs before establishing a sustainable financial model for these expenses.”

We’ve seen this act before. When companies are financially stressed, a relatively easy solution is to lay off workers and ask those who are not laid off to work harder and be thankful that they still have jobs. AI is just a convenient excuse for this cost-cutting.

Last week, when Amazon slashed 14,000 corporate jobs and hinted that more cuts could be coming, a top executive noted the current generation of AI is “enabling companies to innovate much faster than ever before.” Shortly thereafter, another Amazon rep anonymously admitted to NBC News that “AI is not the reason behind the vast majority of reductions.” On an investor call, Amazon CEO Andy Jassy admitted that the layoffs were “not even really AI driven.”

We have been following the slow growth in revenues for generative AI over the last few years, and the revenues are neither big enough to support the number of layoffs attributed to AI, nor to justify the capital expenditures on AI cloud infrastructure. Those expenditures may be approaching $1 trillion for 2025, while AI revenue—which would be used to pay for the use of AI infrastructure to run the software—will not exceed $30 billion this year. Are we to believe that such a small amount of revenue is driving economy-wide layoffs?